Epidermal ‘alarm substance’ cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation

Douglas P. Chivers¹,*, Brian D. Wisenden², Carrie J. Hindman¹, Tracy A. Michalak¹, Robin C. Kusch¹, Susan G. W. Kaminskyj¹, Kristin L. Jack¹, Maud C. O. Ferrari¹, Robyn J. Pollock¹, Colin F. Halbgewachs¹, Michael S. Pollock¹, Shireen Alemadi², Clayton T. James³, Rachel K. Savaloja², Cameron P. Goater³, Amber Corwin², Reehan S. Mirza⁴, Joseph M. Kiesecker⁵, Grant E. Brown⁶, James C. Adrian Jr⁷, Patrick H. Krone⁸, Andrew R. Blaustein⁹ and Alicia Mathis¹⁰

¹Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
²Department of Biosciences, Minnesota State University Moorhead, Moorhead, MN 56563, USA
³Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
⁴Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA
⁵The Nature Conservancy, Wyoming Field Office, 258 Main Street, Suite 200, Lander, WY 82520, USA
⁶Department of Biology, Concordia University, 7141 Sherbrooke West, Montreal, Quebec, Canada H4B 1R6
⁷Department of Chemistry, Union College, 807 Union Street, Schenectady, NY 12308-3107, USA
⁸Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
⁹Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
¹⁰Department of Biology, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA

Many fishes possess specialized epidermal cells that are ruptured by the teeth of predators, thus reliably indicating the presence of an actively foraging predator. Understanding the evolution of these cells has intrigued evolutionary ecologists because the release of these alarm chemicals is not voluntary. Here, we show that predation pressure does not influence alarm cell production in fishes. Alarm cell production is stimulated by exposure to skin-penetrating pathogens (water moulds: Saprolegnia ferax and Saprolegnia parasitica), skin-penetrating parasites (larval trematodes: Teleorchis sp. and Uvulifer sp.) and correlated with exposure to UV radiation. Suppression of the immune system with environmentally relevant levels of Cd inhibits alarm cell production of fishes challenged with Saprolegnia. These data are the first evidence that alarm substance cells have an immune function against ubiquitous environmental challenges to epidermal integrity. Our results indicate that these specialized cells arose and are maintained by natural selection owing to selfish benefits unrelated to predator–prey interactions. Cell contents released when these cells are damaged in predator attacks have secondarily acquired an ecological role as alarm cues because selection favours receivers to detect and respond adaptively to public information about predation.

Keywords: club cells; alarm substance; Schreckstoff; immune function; Ostariophysi; Percidae

1. INTRODUCTION

There is strong selection on animals to attend to public information about predation risk (Danchin et al. 2004; Wisenden & Chivers 2006). In aquatic habitats, public information about risk often takes the form of chemical cues that are passively released during the process of predation (Chivers & Smith 1998; Wisenden & Stacey 2005; Wisenden & Chivers 2006). This is not surprising because water is the universal solvent and ideal for the dispersal of a wide range of chemical compounds. Moreover, the aquatic milieu is the oldest of all environments, leaving aquatic life forms long evolutionary opportunity to innovate and elaborate receptors and behavioural patterns to exploit this information (Wisenden 2003).

An intriguing problem for evolutionary theory is the presence of ‘alarm substance’ cells (figure 1) of fishes in the superorder Ostariophysi (e.g. minnows, characins, catfishes, etc.) that comprise some 64% of all freshwater fish species and 27% of all fish species in the world (Nelson 1994). Some non-ostariophysans (e.g. Percidae: perch, walleye, sauger and darters) also have specialized epidermal club cells with similar histological characteristics (see Smith (1992) for...
review). Club cells lie in the surface layers of the epidermis and are among the first cells to be damaged in an attack by a predator. The contents of club cells cannot be released voluntarily. Release of chemical alarm cues is a reliable form of public information about the presence of an actively foraging predator. This substance was originally termed Schreckstoff (fear substance) by von Frisch (1941). There are abundant examples of the effect of chemical alarm cues on receiver behaviour, life history and morphology (Smith 1992; Smith et al. 2007; Chivers et al. in press).

The presence of these cells, apparently specialized for synthesis and release of olfacturally conspicuous chemicals, is an evolutionary enigma. Club cells are energetically costly to produce (Wisenden & Smith 1997, 1998) but fitness benefits that might reconcile these costs, and maintain production of these cells over evolutionary time, are not obvious (Williams 1992). Smith (1992) summarized 16 hypotheses on mechanisms by which individual fitness might accrue to the sender of the alarm cue; only one among them, attraction of secondary predators, has thus far received empirical support. Laboratory and field experiments demonstrate that predators are differentially attracted to skin extract with club cells (Mathis et al. 1995; Wisenden & Thiel 2002). Once a predator has captured a prey, attempts by a second predator to disrupt the primary predator and pirate the prey can lead to an escape opportunity for the captured prey (Chivers et al. 1996). This hypothesis argues that club cells are a feeding signal to secondary predators, and that their function as an alarm cue occurred secondarily. This explanation provides some satisfaction, but the frequency with which secondary predators exploit damage-released chemical cues is unknown and possibly not common.

We sought other benefits in terms of individual fitness that could provide a selection gradient sufficiently steep to maintain club cells over evolutionary time across diverse taxa. We explored the possibility that the primary function of club cells may be to protect the skin against sources of injury and/or promote healing of damaged skin (Smith 1992). Epidermal cells are in a key location to provide a first line of defence against parasites or pathogens that penetrate through the skin, or promote healing of tissue damaged by bite wounds or UV radiation (Al-Hassen et al. 1985; Smith 1992; Blazer et al. 1997). The cellular contents could act directly on infecting organisms and/or act indirectly by mediating an immune response in the host.

Here, we report an accumulation of data from investigations conducted independently in several laboratories that test this hypothesis. Our goal was to distinguish between the following predictions: (i) if the primary function of club cells is to warn conspecifics (or kin) of danger, then the density of club cells should vary with predation risk, and (ii) if the primary function of club cells is to promote skin healing, then the density of club cells should vary with the risk of attack by parasites/pathogens/UV exposure/general injury. We gathered data from species in the superorder Ostariophysi (Cyprinidae: fathead minnows (FHM), Pimephales promelas) and Acanthopterygii (percid: yellow perch, Perca flavescens; Johnny darters, Etheostoma nigrum) as model species in our assays.

2. MATERIAL AND METHODS

(a) Effect of predation risk on club cells

Our three predation experiments followed the basic protocols of Wisenden & Smith (1997, 1998). In each experiment, we raised FHM in individual tanks for 16 days under different treatments and then euthanized the fishes and quantified the number of club cells in a 0.36 mm length of skin centred over the dorsal intermyal septum. Minnows were raised in containers holding 2.0 l of water at approximately 17.5°C on a 14 L : 10 D photoperiod where they were fed ad libitum. In the first experiment, we manipulated predation risk by exposing FHM to the following extracts. (i) Conspecific skin extracts (containing club cells)—high risk. (ii) Skin extracts from brook stickleback (SB; Culaea inconstans)—medium/high risk; minnows co-occur with stickleback, share common predators with them and respond to stickleback alarm cues with an anti-predator response (Mathis & Smith 1993). (iii) Skin extracts from swordtails (SWTs; Xiphophorus helleri)—low/no risk; SWTs and minnows are phylogenetically distant, do not co-occur in the wild, and SWT extracts do not elicit an alarm response from minnows (Chivers & Smith 1994; Pollock et al. 2003). SWT cues controlled for general responses to cues from injured fish tissue. (iv) Distilled water—low/no risk; controlled for the effect of disturbance from cue introduction. Minnows were exposed twice weekly to approximately 0.02 cm² of homogenized skin from minnows, stickleback or SWTs, or to a control of distilled water (n ranged from 35 to 42 per treatment). At the end of the experiment, the fishes were euthanized with an overdose of tricaine methane sulphonate, preserved in 10% buffered formalin and histological sections were prepared with Schiff’s reagent (periodic acid) and then counterstained with haematoxylin (PAS-H). Club cells are PAS-H negative and appear white with dark central nuclei. The person scoring the slides counted the number of cells per millimetre along the skin cross section; they were blind to the treatments.

In the second predation experiment, we varied predation risk by exposing minnows to cues from either a familiar predator (northern pike, Esox lucius) or an unfamiliar predator (oscar cichlid, Astronotus ocellatus), each of which had been fed either FHM or SWTs. Anti-predator responses to diet-based predatory cues are widespread in predator–prey systems (review Chivers & Mirza 2001). A fifth treatment of distilled water was also included (n ranged from 37 to 47 per treatment). Predator odours were collected from predators (two of each species) held in 37 l aquaria for 24 hours. The pike and oscars ranged from 18.0 to 20.0 cm standard length.

The third predation experiment exposed fishes to a 0.4 nM concentration of hypoxanthine–3–N-oxide (H3NO, the putative ostariophysian fear substance; Brown et al. 2000),
the odour of pike fed minnows (5 ml) and a control of distilled water (n = 32–39 per treatment). The H3NO was synthesized at Union College using the methods described by Brown et al. (2000). In this experiment, fishes were exposed to the cues daily not twice per week.

(b) Effect of body region and trematode infestation on distribution of percid club cells

Johnny darters (E. nigrum) were collected from the Otter Tail River, MN (46°22′24″ N, 96°07′32.02″ W) on 19 October 2001. They were maintained in 185 l aquaria at 18°C on a 12 L: 12 D light cycle and fed a diet of thawed adult brine shrimp. Fishes were overdosed with tricaine methane sulphonate, weighed, measured and epidermal samples were taken from three regions of the body: nape, the dorsal surface between the head and the dorsal fin; flank; bottom, the ventral surface of the caudal peduncle. Tissue sections were fixed in 10% formalin and histological sections were processed with PAS-H. For each skin sample (n = 32), we scored epidermal thickness and the number of mucous and percid club cells per ocular area at 400× magnification. If club cells confer protection against UV exposure, which is highest on the dorsal surface, then we predicted that club cell density on different regions of the body would rank as nape > flank > bottom.

Uvulifer ambloplites (black spot disease) is a trematode parasite of fish-eating birds (kingfishers and herons) that use littoral fishes as second intermediate host (Lemly & Esch 1984). Cercaria released from snails penetrates the epidermis of a fish and encyst as metacercariae in the epidermis to await ingestion of the fish by a final host. Black spot disease is a convenient system for quantifying infestation because the metacercariae encysted in the epidermis are enveloped in melanin (hence ‘black spot’), allowing parasite abundance (numbers of parasites per individual host) to be evaluated without dissection. We used a beach seine to collect 44 perch at the Itasca Biological Field Station (University of Minnesota) in June 2003 (47°13′34.65″ N, 95°11′48.84″ W). We sorted catch by parasite abundance: fewer than 25 black spots per side were classified as low mean abundance (n = 20); 25–50 black spots per side as intermediate mean abundance (n = 14); and perch with more than 50 black spots per side as high parasite abundance (n = 10). Tissue was removed from the nape, flank and ventral side of the caudal peduncle. Tissue processing for histological examination was identical to that of darter tissue.

(c) Effect of trematodes on minnow club cells

In a laboratory experiment, we tested whether investment in club cells of FHM was influenced by the presence of metacercariae of the trematode Télocerhus sp. This species has been shown to penetrate the epidermis of minnows (Michalak 2006). The snails (Physa acuta) and minnows used in this study were collected from State Gamelands, Centre County, PA. The experiment followed the general methodology of the predation experiments. Methods used to expose individual FHM to known numbers of cercariae follow Sandland & Goater (2000). For a period of 16 days, 0, 10 or 70 cercariae originating from field-collected P. acuta were added to tanks with individual FHM every 4 days (n varied from 39 to 47 per treatment). At the end of the experiment, the minnows were euthanized and the number of alarm cells was scored as in the predation experiment in §2a.

(d) Effects of parasitic oomycetes (Saprolegnia ferax and Saprolegnia parasitica) on club cells

In laboratory experiments, we tested whether investment in club cells was influenced by the presence of water moulds (oomycetes of S. ferax and S. parasitica), which are common fish pathogens (Bruno & Wood 1994). FHM were the test species for these experiments. We used the same general methodology as in the predation experiments in §2a. Minnows were raised in 9.5 l aquaria and exposed to a control solution of dilute salts (DSA and DSB, recipe by Dill & Fuller (1971)) or various concentrations of infective cysts of S. ferax (ATCC 36051) or S. parasitica (ATCC 200013) for the 11 day duration of the experiments. The dilute salt solution was the carrier solution used to induce zoosporogenesis. The first Saprolegnia experiment employed a high dose of both S. parasitica and S. ferax (20 000 cysts l−1) and a lower concentration of S. parasitica (2000 cysts l−1). Saprolegnia parasitica is considered more infective than S. ferax (Beakes et al. 1994). The second experiment followed the same protocol as the first but used much lower concentrations of zoospores of S. ferax (20, 200 and 2000 cysts l−1).

If alarm substance has an anti-pathogenic role, this function might be inhibited by immunosuppression. Certainly, fishes reared in crowded hatcheries and those living in polluted waters have relatively high disease incidence (Richards & Pickering 1978). To test this hypothesis, we stressed fishes for 11 days with environmentally relevant levels of Cd (0.564 and 5.64 μg l−1; Jensen & Bro-Rasmussen 1992), a heavy metal that acts as an immunosuppressant in vertebrates (Sanchez-Dardon et al. 1999), simultaneously with a challenge of S. ferax (and controls without Cd). The experimental design followed the same protocol as the other Saprolegnia experiments using a concentration of 1900 zoospores per litre of S. ferax.

(e) Effects of fish skin extracts on growth of S. ferax

We determined whether growth of water mould was inhibited by skin extracts from FHM. We cultured S. ferax in the presence of skin extracts of minnows (with club cells), SWT’s (without club cells) and a control of distilled water. Skin extracts were used at two concentrations: (i) high, 0.205 cm2 of skin homogenized in 1.0 ml of water and (ii) low, 0.0041 cm2 of skin in 1.0 ml of water. Saprolegnia ferax was cultured on GM agar plates by inoculating the plates with a 2 mm2 of S. ferax taken from a master culture. Cultures were maintained at 18°C for 36 hours after which we measured the maximum linear dimension of the cultures to the nearest millimetre with a plastic ruler. All measurements were done blind.

(f) Effect of general injury to epidermis on proliferation of club cells

The purpose of this experiment was to evaluate whether general mechanical injury to the epidermis caused a proliferation of club cells. Our intention was to approximately simulate the penetration of free-swimming trematode cercariae. Yellow perch were collected by seine from Silver Lake, MN (46°49′56.71″ N, 96°19′35.67″ W) and transferred to two, 555 l holding tanks. Black spot disease occurs in this population of perch, but there was no significant difference in infestation rate between the treatment groups (mean ± s.e. number of black spots per side: pooled group = 11.1 ± 3.6, control group = 13.2 ± 3.6, t29 = 0.41, p = 0.68). Water temperature was approximately 20°C, photoperiod was 12 L: 12 D. Fishes were fed thawed adult brine shrimp ad libitum twice daily throughout the experiment. Fishes were
anaesthetized with tricaine methane sulphonate. Approximately half \((n=19)\) of the fishes had their epidermal tissue lightly poked superficially with a sterile needle (29 gauge) 25 times on each side in the epaxial region of the flank below the spiny dorsal fin. The remaining fishes \((n=15)\) were anaesthetized and handled in the same manner as the fishes in the experimental treatment, but not poked. Fishes were returned to separate holding tanks (one for each treatment group) to recover from the anaesthetic. This process was repeated twice more at 4 day intervals. Each time fishes were allowed to recover from the anaesthetic in their holding tanks and feed normally. On the 16th day, all fishes were killed with an overdose of tricaine methane sulphonate and epidermal samples of the epaxial flank region were taken for histological preparation as described for Johnny darters \((\S 2 b)\). Histological tissues were scored by an observer blind to the treatments and experimental question.

3. RESULTS

(a) Effect of predation risk on club cells

Despite the large sampling effort \((n=35–47\) per treatment in each of the three experiments), there were no significant differences in club cell number for minnows exposed to any of the different treatments in any of the three predation experiments \((\text{experiment 1: ANOVA: } F_{4,155} = 0.818, p=0.486; \text{ experiment 2: ANOVA: } F_{4,208} = 1.559, p=0.187; \text{ and experiment 3: ANOVA: } F_{2,104} = 1.874, p=0.159; \text{ figure 2}).

(b) Effect of body region and trematode infestation on distribution of percid club cells

There was a significant difference among nape \((N)\), flank \((F)\) and bottom \((B)\) body regions in the concentration of percid club cells in Johnny darters \((\text{ANOVA: } F_{2,71} = 30.39, p<0.001; \text{ figure 3}). A similar distribution pattern among body regions was observed in yellow perch \((\text{figure 4a–c}). These effects were independent of a positive correlation between percid club cell number and degree of parasitism \((\text{ANOVA: parasite } F_{2,114} = 3.72, p=0.027; \text{NFB } F_{2,114} = 38.49, p<0.001; \text{ interaction } F_{4,114} = 0.40, p=0.812). Parasite load had no significant effect on number of mucous cells \((\text{ANOVA: parasite } F_{2,114} = 1.04, p=0.357; \text{ NFB } F_{2,114} = 19.56, p<0.001; \text{ interaction } F_{4,114} = 0.43, p=0.785) \text{ or epidermal thickness } \((\text{ANOVA: parasite } F_{2,114} = 2.06, p=0.131; \text{ NFB } F_{2,114} = 35.14, p<0.001; \text{ interaction } F_{4,114} = 0.10, p=0.983)\).

(c) Effect of trematodes on minnow club cells

In the laboratory experiment, we observed that *Telesorchis* sp. cercariae penetrated the skin of fishes in both the low and high trematode treatments, but there were no trematodes in fishes from the control treatment. An ANOVA revealed that at the end of the 16 day experiment, the number of club cells in the epidermis of the minnows was significantly greater among fishes in the high trematode treatment than the low trematode and control treatments \((F_{2,118} = 7.473, p<0.001; \text{ figure 5}).

(d) Effects of parasitic oomycetes \((S. ferax and S. parasitica) on minnow club cells

Club cell number was greater in minnows challenged with the infective stage of water mould than those given the control solution \((\text{ANOVA: } F_{5,154} = 9.093, p<0.001)\).

Figure 2. Mean±s.e. number of club cells per millimetre section for minnows raised under different risks of predation. (a) Fishes were exposed to a control of distilled water or skin extracts of FHM, SB or SWT. (b) Fishes were exposed to distilled water or cues of oscars or pike fed FHM or SB. (c) Fishes were exposed to distilled water, cues of pike fed FHM or a solution of hypoxanthine-3-(N’)-oxide (H3NO). See text for details of experiments.

Figure 3. Mean±s.e. number of percid club cells in the epidermis of Johnny darters per ocular diameter \((400\times)\) for tissues sampled from three regions of the body: nape, flank and bottom. Different letters over bars indicate significant differences based on Tukey post hoc comparisons \((p<0.05)\).

Interestingly, there was no difference in the number of cells for fishes exposed to *S. ferax* or *S. parasitica* or those exposed to the low and high concentration treatments \((\text{figure 6a}).

Minnows challenged with the infective stage of water mould had a greater number of alarm cells than fishes in the control treatments (ANOVA: $F_{3,122} = 11.75$, $p < 0.001$). Again, there was no difference in the number of cells among the various concentration treatments, indicating that investment in club cells is not graded to the level of cysts, but rather is a threshold response (figure 6).

If the presence of *Saprolegnia* cysts induced club cell investment by minnows, then this could be an immune-mediated response. Consequently, we treated fishes with a known immunosuppressant, Cd (Sanchez-Dardon et al. 1999). The final experiment examining the effects of *Saprolegnia* on club cell investment provides evidence of a link with immune function (figure 7). Results of the 2×3 ANOVA indicated a significant interaction between the presence of cysts and Cd level ($F_{2,202} = 15.104$, $p < 0.001$). At high levels of Cd, test fishes were no longer able to increase production of club cells in response to the zoospore challenge.

Figure 5. Mean (\pm s.e.) of log[club cell number] per millimetre section for minnows raised in the presence of larval trematodes. The experiment was 16 days in length and 0, 10 or 70 cercariae (family Teleorchidae) were added to the containers every 4 days (sample sizes varied from 35 to 46 per treatment). Different letters over bars indicate significant differences based on Tukey post hoc comparisons ($p < 0.05$).

Figure 6. Mean (\pm s.e.) number of club cells per millimetre section for minnows raised in the presence of water moulds. (a) Minnows raised for 16 days in the presence of water moulds (*S. ferax* and *S. parasitica*) or a solution of dilute salts (DSA and DSB). (b) Minnows raised for 14 days in the presence of 20, 200 or 2000 *S. ferax* zoospores or a solution of dilute salts (control). Different letters over bars indicate significant differences based on Tukey post hoc comparisons ($p < 0.05$).
There was no significant response of perch epidermis to proliferation of club cells (\(Z_{10}^{c} = 0.6\) (2007) and references therein). Studies directly testing for a protective function of club cells are needed.

There are no significant differences in any measure of epidermal thickness (\(Z_{10}^{c} = 0.7\) (2007) and references therein). Studies directly testing for a protective function of club cells are needed.

4. DISCUSSION

Our data suggest that epidermal club cells in fishes of the Ostariophysi and Acanthopterygi may be maintained by natural selection owing to protection they confer against pathogens, parasites and UV radiation as agents that compromise the integrity of the epidermal layer. A significant element of this argument is the apparent parallel evolution of similar cells within two major and independent lineages of fishes. Cells of similar histological characteristics have also been reported in other fish groups such as the Poeciliidae, Electroidae, Centrarchidae and Cottidae (Wisenden & Chivers 2006 and references therein). Studies directly testing for a protective function of club cells are needed.

Our data suggest that epidermal club cells in fishes of the Ostariophysi and Acanthopterygi may be maintained by natural selection owing to protection they confer against pathogens, parasites and UV radiation as agents that compromise the integrity of the epidermal layer. A significant element of this argument is the apparent parallel evolution of similar cells within two major and independent lineages of fishes. Cells of similar histological characteristics have also been reported in other fish groups such as the Poeciliidae, Electroidae, Centrarchidae and Cottidae (Wisenden & Chivers 2006 and references therein). Studies directly testing for a protective function of club cells are needed.

Table 1. Mean (s.e.) number of mucous cells, club cells and mean epidermal thickness (mm) in skin samples of yellow perch collected from the nape region. (Half of the perch received needle pokes (under anaesthesia) to injure the epidermis. Control fishes received no pokes. \(t\)-test showed no significant difference in any measure of epidermal quality (\(p>0.05\)).)

<table>
<thead>
<tr>
<th></th>
<th>mucous cells</th>
<th>club cells</th>
<th>epidermal thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>injured</td>
<td>138.05 (6.3)</td>
<td>6.63 (0.8)</td>
<td>1.78 (0.1)</td>
</tr>
<tr>
<td>control</td>
<td>148.36 (5.2)</td>
<td>5.27 (0.4)</td>
<td>1.67 (0.1)</td>
</tr>
</tbody>
</table>

Figure 8. Mean (\(\pm s.e.\)) of log (cell number) per millimetre section for minnows raised for 14 days under two concentrations of Cd (0.564 and 5.64 \(\mu g\)1\(^{-1}\)) in the presence of S. ferax or a distilled water control. Different letters over bars indicate significant differences at \(p<0.01\).

(e) Effects of fish skin extracts on growth of S. ferax

When compared with the distilled water control treatment, the presence of minnow skin extract reduced Saprolegnia growth, whereas SWT skin extract increased Saprolegnia growth in comparison to the control treatments (ANOVA: \(F_{5,58} = 85.461, p = 0.001\); figure 8).

(f) Effect of general injury to epidermis on proliferation of club cells

There was no significant response of perch epidermis to the experimental penetration injury (mucous cell count: \(t_{32} = 1.21, p = 0.235\); percic cell count: \(t_{32} = 1.44, p = 0.161\); epidermal thickness: \(t_{32} = 0.75, p = 0.460\); table 1).

We were not able (§2f) to experimentally demonstrate a causal link between general epidermal injury and club cell production. We predicted that if club cells respond to general epidermal injury, then perch with a recent history of injury would have more club cells than those without that history. The results were in the predicted direction, indicating that we should be cautious about strongly concluding that general injury plays no role in triggering production of club cells. It may be the case that injury per se is only part of the stimulus required to stimulate club cell production. Additional chemical cues from the causative agent (pathogen, parasite, etc.) may be required.
to stimulate adaptive shifts in the chemistry within the club cells.

Club cells of some fish species contain chondroitin and keratins (Ralphs & Benjamin 1992; Zacccone et al. 1999), which could help in repair of damaged tissue (but see Iger & Abraham (1990)). Hypoxanthine-3-(N)-oxide was named as the putative active ingredient of ostariophysan alarm cells by Argentini (1976; after Pfeiffer 1982) and subsequent work confirmed its ability to induce alarm behaviour (Pfeiffer et al. 1985; Brown et al. 2000). In contrast, the most biologically active fractions from gel chromatography of minnow skin extracts show that components that elicit fright reactions are large molecules with molecular weights of approximately 1100 Da and with weights greater than 1500 Da (Lebedeva et al. 1975; Kasumyan & Ponomarev 1987). Compounds with smaller molecular weights (350–550 Da), where free hypoxanthine-3-(N)-oxide would resolve, did not induce alarm behaviour in experimental trials (Lebedeva et al. 1975; Kasumyan & Ponomarev 1987). The evolution of cellular chemistry that best defends skin against pathogens, parasites and UV radiation may well occur independently of selection (albeit relatively weaker) for cellular chemistry that is most effectively detected by nearby conspecifics and predators. Basic chemical characterization of the contents of club cells is currently lacking. This knowledge would shed light on club cell functions and may potentially open new research avenues for pharmaceutical applications against disease agents or UV radiation.

The mechanism(s) by which club cells inhibit pathogens and parasites remains to be determined. However, given the immunosuppressive nature of heavy metals, there is a clear link with the immune system. Susceptibility to skin infections such as Saprolegnia is increased for fishes that have been subjected to environmental stress (Bruno & Wood 1994). Likewise, the interaction between FHM and cercariae of one of their common trematodes is strongly affected by low concentrations of cadmium (Pietrock & Goater 2005). There is little doubt that stressors (UVB, pollution and parasites) are increasing due to global environmental changes. For example, decreases in stratospheric ozone increase exposure to UVB radiation (Blaustein et al. 1997; Rex et al. 2004), emerging diseases are of increasing local and global importance (Kiesecker, Chivers, Anthony, Blaustein, Kiesecker, Chivers, D. P. & Anthony, R. G. 1997 Ambient UV-B radiation causes deformities in amphibian embryos. Proc. Natl Acad. Sci. USA 94, 13735–13737. (doi:10.1073/pnas.94.25.13735)

Danchin, E., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H.

Jensen, A. & Bro-Rasmussen, F. 1992 Environmental

